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Introduction

When crafting a controlled language (CL) out of somenatural language like
English, care should be taken to clearly establish its expressivity bounds.
CLs are fragments of natural language (NL) defined with the purpose of
carrying out a particular data management of knowlegde representation
without the ambiguity inherent to NL. Lite English purports to capture in
NL query answering over description logic knowledge bases (QA) and in
particular, over DL-Lite knowledge bases and hence ontology driven data
access (cf. [1]). But then, how can we be sure we have attained this goal or
if it is even possible? How can we know that a controlled language makes
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sense to a native speaker in the context of, say, accessing data from some
structured knowlege source using a NL interface? One way, that we have
explored to some extent is that of comparing Lite English (and a fortioriDL-
LiteR,⊓ to fragments of English that already exist, namely those of I. Pratt
and A. Third (cf. [10]). Comparing themw.r.t. expressiver power provides
a way of characterizing the expressive power of Lite English relatively to
these fragments (cf. [1, 2, 12]). The question now is: can we character-
ize it in absolute terms? Is there some property capable of providing us
sufficient and necessary considitions regarding the expressiveness (in FOL
model-theoretical terms) of Lite English? Yes and no: yes at the level of
formulae or concepts and no at the level of sentences and assertions. At
the level of concepts, a notion of simulation can be defined, in a way anal-
ogous to other description logics (cf. [9]). However, when we move to
assertions, such closure properties cease to provide sufficient conditions
(only necessary ones). Moreover, we show that the entailement problem
QA is NP-Complete in combined complexity (i.e., when both the query and
the whole KB are taken into account): the same complexity class as that of
COP+Rel. This without however being propositionally complete, given
the controlled behaviour of negation, relatives and conjunction. But in any
case showing that for a more fine-grained expressivity analysis, semantic
techniques are essential.
The structure of this report is as follows. Section 1 will recall some ba-

sic results regarding the computational complexity of QA over DL-LiteR,⊓
knowledge bases. Section 2 will recall some properties of DL-LiteR,⊓ as a
fragment of FOL. Section 3 will introduce the notion of DL-LiteR,⊓ simu-
lation. Section 4 will provide some negative results regarding an abso-
lute characterization of DL-LiteR,⊓’s expressive power (in model-theoretic
terms). Section 5 will compare DL-LiteR,⊓’s expressive power to that of
Pratt’s and Third’s intractable fragment of English COP+Rel. Finally, the
conclusions will sum up our results.

1 Complexity of QA over DL-LiteR,⊓ KBs

In this section we recall some results regarding the computational com-
plexity of conjunctive query answering (QA) over DL-LiteR,⊓ knowledge
bases (cf. [7, 6, 5]). This is important since the complexity is one of the two
main properties that characterize a logic’s expressive power – the other
one being the classes of structures (or models) it can express. A we shall
see, it is NP-Complete in combined complexity. That is, when we take as
input for the decision problem (i) the size |q| of a UCQ q (the number of its
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symbols), (ii) the data complexity of the KB (the number of its pairwise dis-
tinct constants) and (iii) the size #(T ) of its TBox (the number of assertions
the TBox contains). This implies that there is no way of distinguishing
DL-Lite from, say, COP+Rel by computational complexity alone – we will
distinguish them later on by purely semantic means.
We begin by recalling the notion of FOL-reducibility. A DL is said to be

FOL-reducible whenever, given a UCQ q and a KB we can ”compile” the
TBox into the query and store the ABox in a DB engine in such a way that
the computational complexity of full FOL queries is preserved in this new
setting: it has to be logarithmic in the number of the DB’s tuples. That is,
whenever a perfect reformulation exists for this logic. DL-LiteR,⊓ happens to
verify this property.

Definition 1.1. A perfect reformulation is a reduction algorithm denoted
PerfectRef(T , q) that takes as input a description logic TBox T and a UCQ
q and outputs in time polynomial on the size #(T ) of T a UCQ qT such
that, for every description logic KB K = 〈T ,A〉, it holds that:

T ,A |= q(~c) iff ~c ∈ PerfectRef(T , q)A

iff ~c ∈ qA
T
.

That is, such that the description logic is FOL-reducible.

Proposition 1.1. (Calvanese et. al) A PerfectRef exists for DL-LiteR,⊓.

Proposition 1.2. (Calvanese et. al) QA over DL-LiteR,⊓ KBs is:

• LOGSPACE in data complexity.

• P-Hard on the size of the KB.

• NP-Complete in query complexity.

Lemma 1.1. QA is inNP.

Proof. Let K = 〈T ,A〉 be a KB and let q(~c) be the grounding of a CQ over
the signature L ofK . First, consider:

(1) T ,A |= q(~c).

Let #(T ) denote the number of assertions in T . We know that T can be
compiled into q by PerfectRef in time polynomial on #(T ), such that:

(2) A |= qT (~c)
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is equivalent to (1). Now, qT (~c) is of the form∃~y1ψ1(~y1,~c1)∨...∨∃~ykψk(~yk,~ck).
Hence, (2) holds if, for some i ∈ [1, k], there is an assigment v : Var(ψi) →
Con(A), whereVar(ψi) denotes the set of variables of ψi and Con(A) the set
of constants ofA, such that:

(3) A |= ∃~yiψi(~yi,~ci)[v].

Remark that the formula ψi(~yi,~ci) for i ∈ [1, k] is quantifier-free. Next,
choose a random assigment v and scan the k disjuncts of the UCQ. Denote
by #(A) the number of assertions in A. Suppose moreover w.l.g. that the
ψi(~yi,~ci), for i ∈ [1, k] contain at most p atoms. Then we can check whether
(3) holds in time polynomial on k × #(A) × p.

Lemma 1.2. QA isNP-Hard in combined complexity.

Proof. By reduction of the graph homeomorphism problem. We will con-
sider KBs with empty TBoxes. Let G1 = 〈V1,E1〉 and G2 = 〈V2,E2〉 be two
graphs. Encode G1 and G2 as follows:

• For each 〈u, v〉 ∈ E1, add the fact R(cu, cv) to the ABoxAG1 .

• For each 〈u′, v′〉 ∈ E2, add the ground atom R(cu′ , cv′) to the UCQ qG2 ,
which is a conjunction of such atoms.

Both steps can be done in time polynomial on #(E1) and #(E2). Now we
claim that:

(4) There is an homeomorphism h from G1 to G2 iffAG1 |= qG2 .

Recall that qG2 is of the form qG2 := qG2(~c). Now, since there is a PerfectRef
algorithm for DL-Lite:

AG1 |= qG2(~c) iff ~c ∈ q
G1
G2
.

Now, the interpretation function .G1 can be seen as an homeomorphism
mapping qG2 onto G1. Since qG2 encodes G2, the claim (4) follows immedi-
ately.

Theorem 1.1. QA isNP-Complete in combined complexity.
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2 DL-LiteR,⊓ as a fragment of FOL

We can extend the language L of DL-Lite to a language L′ with some new
constants and concept constructors such that every TBox T ′ over L′ is a
conservative extension of a TBox T over L. A TBox T ′ over L′ is said to
be a conservative extension of a TBox T over L when, and only when, for
every assertion α over L, T ′ |= α iff T |= α. This can be trivially achieved
with the following definition:

Definition 2.1. We put:

{A ⊑ B ⊓ C} =d f {A ⊑ B,
A ⊑ C}.

{A ⊔ B ⊑ C} =d f {A ⊑ C,
B ⊑ C}.

{A ⊑ ∃R : C} =d f {A ⊑ ∃R,
R ⊑ R′,
∃R′− ⊑ C}.

{A ⊑ ⊥} =d f {A ⊑ B ⊓ ¬B}.

WhereC andD are arbitrary right hand side concepts,A andB arbitrary left
hand side concepts and R,R′ basic roles. The right hand side concepts are
called, respectively, qualified existential role, concept conjunction and bottom.
The left hand side concept is called concept disjunction.

DL-Lite, as other description logics is a fragment of FOL (cf. [3]), be-
longing to HORN, i.e., the class of FOL horn clauses (cf. [4]). This means
that they are closed under the following properties: (i) finite intersections
and (ii) ultraproducts (cf. [8]). Property (i) in particular implies the exis-
tence ofminimalmodels up to elementary equivalence of structures aswell
as the existence of a least Herbrand model w.r.t. inclusion. Furthermore,
DL-Lite is included in FO2 the two-variable fragment of FOL and, as most
description logics, in the guarded fragment – hence it satisfies the finite
model property. Finally, as it belongs to the ∀∃∗ prefix class, it is included
in the Gödel class.

3 DL-LiteR,⊓ Simulations

Our purpose in this section is that of characterizing the absolute expressive
power of DL-Lite as a logic. This is possible only at the level of concepts
or formulas (in FOL) and not of assertions (or sentences) by means of the
notion of DL-LiteR,⊓ simulations. This notion is adapted from de Rijke’s
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work on classifying DLs (cf. [9]). The intuition behind is that a concept
(or a formula) cannot distinguish between structures, models or interpre-
tations in the same way a sentence or assertion does. Simulations are
satisfaction-preserving equivalence relations on structures based on the
notion of bisimulations for modal logic (and for DLs such asALC). Their
nice feature is that whenever a FOL formula is closed under DL-LiteR,⊓
simulations, it is equivalent to some DL-LiteR,⊓ right or left hand side con-
cept. Furthermore, this condition is both necessary and sufficient. When
we move on to sentences or assertions this changes. Only necessary con-
ditions are possible: we can prove that DL-Lite’s expressive power (at the
level of assertions) cannot be characterized (in the technical sense of the
word) through semantic means.

Definition 3.1. Given to interpretations I andJ , aDL-LiteR,⊓ left simulation
is a relation B ⊆ P(∆I) × ∆J s.t., for every X1 ⊆ ∆

I and every d2 ∈ ∆
f J and

any basic concept A:

1. X1Bd2 and X1 ⊆ A
I imply d2 ∈ ∆

J (A).

2. X1Bd2 and forall d1 ∈ X1 exists e1 ∈ y1 ⊆ ∆
I such that d1R

Ie1 imply
exists e2 ∈ ∆

J such that d2R
Je2 (∃R).

The clause for concept conjunction follows implicitly from the defini-
tion. We can extend the notion of simulation to right-hand side concepts
as follows:

Definition 3.2. A DL-LiteR,⊓ right simulation is a relation as above. We just
add new clauses to the definition to cover right hand side concepts. C is
an arbitrary right hand side concept and B a left hand side concept:

1. X1Bd2 and X1 ⊆ ¬B
I imply d2 < ∆

J (¬B).

2. X1Bd2 and forall d1 ∈ X1 there exists no e1 ∈ y1 ⊆ ∆
I such that d1R

Ie1
implies that there is no e2 ∈ ∆

J such that d2R
Je2 (¬∃R).

3. X1Bd2 and forall d1 ∈ X1 exists e1 ∈ y1 ⊆ ∆
I such that d1R

Ie1 imply
exists e2 ∈ ∆

J such that d2R
Je2 and Y1Be2 (∃R : C).

Definition 3.3. A DL-LiteR,⊓ simulation is a left or a right simulation. If
there exists a DL-LiteR,⊓ simulation B among two interpretations I and J
we say that they are DL-LiteR,⊓ similar and write I ∼DL J .

DL-Lite simulations preserve concept satisfiability. It is trivial to show
that for any arbitrary interpretations I and J such that I ∼DL J and
any concept C, there exist d ∈ ∆I, d′ ∈ ∆J such that d ∈ CI iff d′ ∈ CJ .
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They are equivalence relations on interpretations (reflexive, transitive and
symmetric).

Definition 3.4. We say that a FOL formula φ is closed under DL-Lite simula-
tions iff for every two interpretations I andJ , and any DL-Lite simulation
B ⊆ ∆I × ∆J every X ⊆ ∆I and every d′ ∈ ∆J such that XBd′ it holds that,
for every d ∈ X,:

I |= φ[d] implies J |= φ[d′].

Lemma 3.1. If a FOL formulaφ is equivalent to aDL-Lite right hand or left hand
side concept, then it is closed under DL-LiteR,⊓ simulations.

Proof. Let φ be a FOL formula closed under DL-LiteR,⊓ simulations. Let
Con(φ) denote the set of consequences in DL-Lite of a FOL formula φ. If
we can prove that φ and Con(φ) are equivalent we will be done. Now
by compactness Con(φ) has a model iff every finite subset Σ has a model,
whence the concept

�
C∈Σ C should have a model too. Clearly, φ |=

�
C∈Σ C,

and hence every model of φ is a model of
�
C∈Σ C. It is more lengthy to

prove that:

(5) Con(φ) |= φ.

Let I |= Con(φ)[d], for an arbitrary intrepretation I and d ∈ ∆I. Now we
need to see whether I |= φ[d] holds too. Let Γ = {¬C|d < CI}. Then,

for every ¬C ∈ Γ, {φ,¬C} is consistent.

Otherwise φ |= C and hence I |= C[d], i.e., ¬C < Γ. Hence for every ¬C ∈ Γ
there exists an interpretation IC and dC ∈ ∆

IC such that IC |= φ[dC] and
dC ∈ C

IC . The idea now is to build an interpretation (from which to build
a DL-LiteR,⊓ simulation) by picking the union of all such interpretations;
modulo this bisimulation we will be able to prove claim (5). For this put,
whenever ¬C ∈ Γ,:

J =
⋃

dC∈C
IC

(IC, dC).

The structureJ is aDL-LiteR,⊓ interpretation. Then, for every ¬C ∈ Γ there
is a DL-Lite simulation B such that {dC}BdC, for {dC} ⊆ ∆J and dC ∈ ∆IC .
Moreover it holds that:

for all dC, dC ∈ D
J implies d ∈ DI.

For, indeed, let dC ∈ D
J and suppose that d < DI. Then ¬D ∈ Γ and by the

same token there is a dD ∈ ∆
J such that dD < D

J . It is enough to put dC = dD
to get a contradiction. Now, define a DL-Lite simulation B ⊆ P(∆J ) × ∆I

by putting:
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X1Bd2 iff for every concept D, X1 ⊆ D
J implies d2 ∈ D

I.

B is a DL-Lite simulation. To prove this we reason by cases:

• The property trivially holds for basic concepts.

• Consider C = ¬D. Let X1 ⊆ ¬D
J , X1Bd2. Now, by definition of B,

d2 ∈ C
I, that is, d2 ∈ ¬D

I = ∆I −DI iff d2 < D
I.

• Consider C = ∃R. Let X1Bd2 and d1 ∈ X1 such that there is some
e1 ∈ Y1 ⊆ ∆

J such that d1R
Je1. Now, X1 ⊆ (∃R)

J , so d2 ∈ (∃R)
I and

hence there is some e2 ∈ ∆
I such that d2R

Je2.

• Consider C = ¬∃R. This is proven by combining the two previous
cases.

• Consider C = ∃R : D. Let X1Bd2 s.t. exists e1 ∈ Y1 ⊆ ∆
J and d1R

Je1.
X1 ⊆ (∃R : D), therefore, d2 ∈ (∃R : D)

I by definition and so there is
an e2 ∈ ∆

I such that d2R
Ie2, e2 ∈ D

I and Y1Be2. Let E be an arbitrary
concept such that Y1 ⊆ D

J and suppose that e2 < D
I. This should

hold in particular for D := C, which leads to an absurdity. Thus
e2 ∈ D

I.

Furthermore, B is a DL-LiteR,⊓ simulation between {dC ∈ ∆J |¬C ∈ Γ} and d,
hence for every dC ∈ ∆

J ,J |= φ[d]. Finally, given that, by assumption, φ is
closed under DL-Lite simulations, I |= φ[d].

Lemma 3.2. If A FOL formula φ is closed under DL-Lite simulations, then it is
equivalent to a DL-Lite right hand or left hand side concept.

Proof. We prove the lemma by induction on C:

• (Basis)

– C := A (basic concept). Let I,J be two interpretations, X1 ⊆
∆I, d2 ∈ ∆J ,B ⊆ P(∆I)×∆J and assume that X1Bd2. Let d1 ∈ X1
such that d1 ∈ C

I. Therefore it holds that X1 ⊆ A
I, whence (by

definition) d2 ∈ A
J .

– C := ¬A (analogous argument).

– C := ∃R (unqualified existential). Make the same assumptions
as before and suppose that d1 ∈ (∃R)

I. Then there exists e1 ∈ ∆
I

such that d1R
Ie1, whence, by definition ofDL-Lite simulationsB,

there is an e2 ∈ ∆
J such that d2R

Je2, that is, such that d2 ∈ (∃R)
J .

– C := ¬∃R (analogous argument).

8



• (Inductive step)

– C := ∃R : D (qualified existential). Suppose that d1 ∈ (∃R : D)
I

and that therefore there is some e1 ∈ ∆
I such that e1 ∈ D

I and
d1R

Ie2. By induction hypothesis this impies that e2 ∈ D
J . There-

fore d2 ∈ (∃R : D)
J as well.

– C := D ⊓ E (concept conjunction). By induction hypothesis the
property holds for D and E. Now:

d1 ∈ (D ⊓ E)
I iff d1 ∈ D

I and d1 ∈ E
I

implies d2 ∈ D
J and d2 ∈ E

J

iff d2 ∈ (D ⊓ E)
J ,

which closes the proof.

From this two lemmas, we immediately derive the result we wanted,
namely:

Theorem 3.1. A FOL formula φ is equivalent to a DL-LiteR,⊓ right hand or left
hand side concept iff it is closed under DL-Lite simulations.

Example 3.1. As an example, we will again prove that COP+TV is not
as expressive as DL-LiteR,⊓ by restricting ourselves this time to formulas.
Consider the following COP+TV formula: ∀yR(x, y) ∧ A(y). This formula
constitutes, intuitively, the MR of a universally quantified COP+TV VP
and as we will soon see, it is not closed under DL-LiteR,⊓ simulations.

∆I0 ∆J0

B0R

AI0

d1

d2

d3

d4 d5

As the reader may see, B0 is a DL-Lite simulation, I0 and J0 are interpre-
tations, {d1} ⊆ {d ∈ ∆

I0 |I0 |= ∀yR(x, y) ∧ A(y)[d]}, but d2 < {d′ ∈ ∆J0 |J0 |=
∀yR(x, y) ∧A(y)[d′]} = ∅. ‡

9



4 Some Negative Results

As we said before, it is impossibly to characterize exactly the expressive
power of DL-Lite when we move up to assertions, ABoxes and TBoxes.
We can, at most, as we have done elsewhere, provide necessary conditions
by way of closure properties that hold for its assertions (like closure under
union of chains). This result is analogous to those obtained by Allan Third
(cf. [11]).

Proposition 4.1. Disjunction is not expressible in DL-Lite

Proof. Suppose it is. Consider the FOL sentence φ := P(a) ∨ Q(a). Let
H = 〈{a}, {P(a)}〉 and H ′ = 〈{a}, {Q(a)}〉 be two Herbard models. Clearly
H |= φ, H ′ |= φ and H , H ′. Futhermore, they are two minimal models
of φ. Now, DL-LiteR,⊓ is HORN, which means that it has a least Herbrand
model (w.r.t. inclusion) and so should φ. But this is absurd.

Theorem 4.1. There is no invariance relation ∼ on interpretations such that, for
any FOL sentence φ, φ is equivalent to aDL-LiteR,⊓ assertion iff it is closed under
the relation ∼.

Proof. Suppose the contrary and consider the ABox assertion P(a). Let I
and J be two structures s.t. I ∼ J and suppose that I |= P(a). Then,
obviously, J |= P(a) too. But then:

I |= P(a) implies I |= P(a) ∨Q(a) and
J |= P(a) implies J |= P(a) ∨Q(a).

This makes sense because interpretations are nothing but FOLmodels. In
other words, P(a) ∨Q(a) is closed under ∼. But this is impossible, because
disjunction is not expressible in DL-LiteR,⊓.

5 DL-LiteR,⊓ and COP+Rel

As expected, DL-LiteR,⊓ and COP+Rel MRs only overlap w.r.t. expressive
power, since they both contain the MRs of COP. This is shown using,
again, model-theoretic techniques. This makes sense because COP+Rel
allows reducing entailment to satisfiability, which is NP-Complete – i.e.
the same complexity class as for QA for DL-LiteR,⊓, which is, esentially,
that of deciding the entailment by a KB of a UCQ. For, ideed, QA can be
captured to a certain extent by COP+Rel.

Theorem 5.1. We have that:
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1. DL-LiteR,⊓ is not as expressive as COP+Rel.

2. COP+Rel is not as expressive as DL-LiteR,⊓.

Proof. For (1) Consider the COP+Rel sentence: ”It is not the case that John
is not a policeman who is not a man” whose MR is:

¬(¬Policeman(John) ∧ ¬Man(John)))

This FOL sentence is equivalent to Policeman(John)∨Man(John) which can-
not be expressed in DL-LiteR,⊓.
For (2) we recall that have shown elsewhere that COP is not as expres-

sive as DL-Lite. The result follows immediately.

Remark 5.1. As we said before QA can be captured to a certain extent by
COP+Rel. For consider the following entailment:

Γ,∆ |= φ

where:

• Γ is a set of universally quantified FOL sentence i.e. belonging to the
∀∗ class.

• ∆ is a set of ground atoms.

• φ is a positive existential FOL sentence.

These sentences correspond to COP+Rel MRs and can be expressed in DL-
LiteR,⊓ too. The complexity upper bound for reasoning in such a fragment
of COP+Relwould thus be LOGSPACE too. †

Conclusions

As we have seen, an notion of simulation can be defined over DL-LiteR,⊓
concepts, characterizing, so to speak, modulo this closure property, the
classes of interpretations (models or FOL interpretation structures) that
satisfyDL-LiteR,⊓ concepts. It provides necessary and sufficient conditions.
However, when we move to assertions, this is no longer the case and only
necessary conditions can be achieved, due to DL-LiteR,⊓’s properties as
a fragment of FOL. In any case, semantics, model-theoretic properties of
these are essential, we believe, for providing amorefine-grained analysis of
the expressive power of DL-LiteR,⊓ w.r.t. to Pratt’s and Third’s fragments,
given that combined complexity for QA is untractable, which blurs the
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differences between this entailement problem and those of the intractable
fragments of English. Furthermore, many of these results hold too for
other members of the DL-Lite family.
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